государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа с. Пестравка муниципального района Пестравский Самарской области

УТВЕРЖДАЮ

ПРОВЕРЕНО Заместитель директора по УВР

PACCMOTPEHO на заседании МО Протокол № 1 от 29.08.2019г.

Казачкова Л.А.

02.09. 2019г.

Гиеу Глазкова Н.В.

30.08. 2019г.

Председатель МО Ум. Умужь Тим. (Ф.И.О.) 729.08. 2019г.

РАБОЧАЯ ПРОГРАММА

Mamellanure класс на 2019-2020 уч. год

Рабочая программа по математике (алгебре и началам математического анализа). 11 класс

Пояснительная записка Общая характеристика программы

Рабочая программа по математике (алгебра начала математического анализа) разработана на основе сборника рабочих программ сост Т.А. Бурмистрова. Пособие для учителей общеобразовательных учреждений « Алгебра и начала математического анализа 10-11 класс» для учебника. Алимов Ш.А., Колягин Ю.М., Ткачева М.В. и др. М, Просвещение», 2016 г.в соответствии с нормативно-правовыми документами:

- Федеральный базисный учебный план и примерные учебные планы для образовательных учреждений Российской Федерации, реализующих программы общего образования, утвержденный приказом Минобрнауки России от 09.03.2004 № 1312 (с изменениями и дополнениями от 20.08.2008 № 241, от 30.08.2010 №889, от 03.06.2011 №1994, от 01.02.2012 №74);
- Порядок организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования, утвержденный приказом Минобрнауки России от 30.08.2013 №1015;
- Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образовании, утвержденный приказом Минобрнауки России от 31.03.2014 № 253 (в ред. Приказов Минобрнауки от 08.06.2015 №576, от 28.12.2015 №1529, от 26.01.2016 №38, от 21.04.2016 №459, от 29.12.2016 №1677, от 08.06.2017 №535, от 20.06.2017 №581, от 05.07.2017 №629);
- Базисный учебный план образовательных учреждений Самарской области, реализующих программы общего образования, утвержденный приказом Минобрнауки Самарской области от 04.04.2005 №55-од;
- Об организации образовательного процесса в образовательных организациях, осуществляющих деятельность по основным общеобразовательным программам, письмо Минобрнауки Самарской области от 29.05.2018 №МО-16-09-01/535-ТУ.

• Постановление от 29.12.2010 № 189 об утверждении СанПиН 2.4.2.2821-10 Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях.

Рабочая программа ориентирована на требования к результатам образования, содержащимся в основной образовательной программе среднего общего образования.

Практическая значимость школьного курса алгебры и начал математического анализа обусловлена тем, что его объектами являются фундаментальные структуры и количественные отношения действительного мира. Математическая подготовка необходима для понимания принципов устройства и использования современной техники, восприятия научных и технических понятий и идей. Математика является языком науки и техники. С её помощью моделируются и изучаются явления и процессы, происходящие в природе.

Курс алгебры и начал математического анализа является одним из опорных курсов старшей школы: он обеспечивает изучение других дисциплин. В первую очередь это относится к предметам естественно научного цикла, в частности к физике. Развитие логического мышления учащихся при изучении алгебры и начал математического анализа способствует усвоению предметов гуманитарного цикла. Практические умения и навыки математического характера необходимы для трудовой и профессиональной подготовки школьников.

Развитие у учащихся правильных представлений о сущности и происхождении математических абстракций, соотношении реального и идеального, характере отражения математической наукой явлений и процессов реального мира, месте алгебры и начал математического анализа в системе наук и роли математического моделирования в научном познании и в практике способствует формированию научного мировоззрения учащихся, а также формированию качеств мышления, необходимых для адаптации в современном информационном обществе.

Требуя от учащихся умственных и волевых усилий, концентрации внимания, активности, воображения, математика развивает нравственные черты личности (настойчивость, целеустремлённость, творческую активность, самостоятельность, ответственность, трудолюбие, дисциплину и критичность мышления) и умение аргументировано отстаивать свои взгляды и убеждения, а также способность принимать самостоятельные решения.

Изучение курса алгебры и начал математического анализа существенно расширяет кругозор учащихся, знакомя их с индукцией и дедукцией, обобщением и конкретизацией, анализом и синтезом, классификацией и систематизацией, абстрагированием, аналогией. Активное использование задач на всех этапах учебного процесса развивает творческие способности школьников.

При обучении алгебре и началам математического анализа формируются умения и навыки умственного труда — планирование своей работы, поиск

рациональных путей её выполнения, критическая оценка результатов. В процессе обучения школьники должны научиться излагать свои мысли ясно и исчерпывающе, лаконично и ёмко, приобрести навыки чёткого, аккуратного и грамотного выполнения математических записей.

Важнейшей задачей школьного курса алгебры и начал математического анализа является развитие логического мышления учащихся. Сами объекты математических умозаключений и принятые в математике правила их конструирования способствуют формированию умений обосновывать и доказывать суждения, приводить чёткие определения, развивают логическую интуицию, кратко и наглядно вскрывают механизм логических построений и учат их применению. Тем самым курс алгебры и начал математического анализа занимает ведущее место в формировании научно-теоретического мышления школьников.

Раскрывая внутреннюю гармонию математики, формируя понимание красоты и изящества математических рассуждений, способствуя восприятию математических форм, математика тем самым вносит значительный вклад в эстетическое воспитание учащихся. Её изучение развивает воображение школьников, существенно обогащает их пространственные представления.

- В соответствии с принятой Концепцией развития математического образования в Российской Федерации математическое образование должно решать, в частности, следующие ключевые задачи:
- предоставлять каждому обучающемуся возможность достижения уровня математических знаний, необходимого для дальнейшей успешной жизни в обществе;
- обеспечивать необходимое стране число выпускников, математическая подготовка которых достаточна для продолжения образования в различных направлениях и для практической деятельности, включая преподавание математики, математические исследования, работу в сфере информационных технологий и др.;
- предусматривает в основном общем и среднем общем образовании подготовку обучающихся в соответствии с их запросами к уровню подготовки в сфере математического образования.

Соответственно выделяются три направления требований к результатам математического образования:

- 1. Практико-ориентированное математическое образование (математика для жизни).
- 2. Математика для использования в профессии, не связанной с математикой.
- 3. Творческое направление, на которое нацелены обучающиеся, планирующие заниматься творческой и исследовательской работой в области математики, физики, экономики и других областях.

Общая характеристика курса

Математическое образование играет важную роль и в практической, ив духовной жизни общества. Практическая сторона связана с созданием и применением инструментария, необходимого человеку в его продуктивной деятельности, духовная сторона — с интеллектуальным развитием человека, формированием характера и общей культуры.

Без конкретных знаний по алгебре и началам математического анализа затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты, читать информацию, представленную в виде таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Изучение данного курса завершает формирование **ценностно- смысловых установок и ориентаций** учащихся в отношении математических знаний и проблем их использования в рамках среднего общего образования. Курс способствует формированию умения видеть и понимать их значимость для каждого человека независимо от его профессиональной деятельности; умения различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определённой системой ценностей.

Без базовой математической подготовки невозможно представить образование современного человека. В школе математика служит опорным предметом для изучения смежных дисциплин. Реальной необходимостью в наши дни становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и по алгебре и началам математического анализа.

Для жизни в современном обществе важным является формирование математического стиля мышления. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Алгебре и началам математического анализа принадлежит ведущая роль в формировании алгоритмического мышления, воспитании умений действовать по заданному алгоритму. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение алгебре и началам математического анализа даёт возможность развивать у учащихся точную, лаконичную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства, т. е. способствует формированию коммуникативной культуры, в том числе умению ясно, логично, точно и последовательно

излагать свою точку зрения, использовать языковые средства, адекватные обсуждаемой проблеме.

Дальнейшее развитие приобретут и **познавательные действия**. Учащиеся глубже осознают основные особенности математики как формы человеческого познания, научного метода познания природы, а также возможные сферы и границы её применения.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимыми компонентами общей культуры являются знакомство с методами познания действительности, представление о методах математики, их отличиях от методов естественных и гуманитарных наук, об особенностях применения математики для решения прикладных задач. Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений.

В результате целенаправленной учебной деятельности, осуществляемой в формах учебного исследования, учебного проекта, получит дальнейшее информационно-поисковой способность деятельности: K самостоятельному отбору источников информации в соответствии поставленными целями и задачами. Учащиеся научатся систематизировать заданным признакам, критически информацию оценивать интерпретировать информацию. Изучение курса будет способствовать развитию *ИКТ-компетентности* учащихся.

Получит дальнейшее развитие способность к *самоорганизации* и *саморегуляции*. Учащиеся получат опыт успешной, целенаправленной и результативной учебно- предпрофессиональной деятельности; освоят на практическом уровне умение планировать свою деятельность и управлять ею во времени; использовать ресурсные возможности для достижения целей; осуществлять выбор конструктивных стратегий в трудных ситуациях; самостоятельно реализовывать, контролировать и осуществлять коррекцию учебной и познавательной деятельности на основе предварительного планирования и обратной связи, получаемой от педагогов.

Содержательной основой и главным средством формирования и развития всех указанных способностей служит целенаправленный отбор учебного материала, который ведётся на основе принципов научности и фундаментальности, историзма, доступности и непрерывности, целостности и системности математического образования, его связи с техникой, технологией, жизнью.

Программа регламентирует объём материала, обязательного для изучения, но не задаёт распределения его по классам. Поэтому содержание данного курса включает следующие разделы: «Алгебра», «Математический анализ», «Вероятность и статистика».

Содержание раздела «Алгебра» способствует формированию у учащихся математического аппарата для решения задач окружающей реальности. Продолжается изучение многочленов с целыми коэффициентами, методов нахождения их рациональных корней. Происходит развитие и завершение базовых знаний о числе. Тема «Комплексные числа» знакомит учащихся с

понятием комплексного числа, правилами действий с ними, различными формами записи комплексных чисел, решением простейших уравнений в поле комплексных чисел и завершает основную содержательную линию курса школьной математики «Числа». Основное назначение этих вопросов связано с повышением общей математической подготовки учащихся, освоением простых и эффективных приёмов решения алгебраических задач.

Раздел «Математический анализ» представлен тремя основными темами: «Элементарные функции», «Производная» и «Интеграл». Содержание этого раздела нацелено на получение школьниками конкретных знаний о функции как важнейшей модели описания и исследования разнообразных реальных процессов. Изучение степенных, показательных, логарифмических продолжает тригонометрических функций знакомство учащихся основными элементарными функциями, начатое в основной школе. Помимо непосредственными умениями решать соответствующие овладения уравнения и неравенства, у учащихся формируется запас геометрических представлений, лежащих в основе объяснения правомерности стандартных и эвристических приёмов решения задач. Темы «Производная» и «Интеграл» содержат традиционно трудные вопросы для школьников, даже для тех, кто выбрал изучение математики на углублённом уровне, поэтому их изложение предполагает опору на геометрическую наглядность и на естественную интуицию учащихся более, чем на строгие определения. Тем не менее знакомство с этим материалом даёт представление учащимся об общих идеях и методах математической науки.

При изучении раздела «Вероятность и статистика» рассматриваются различные математические модели, позволяющие измерять и сравнивать вероятности различных событий, делать выводы и прогнозы. Этот материал необходим прежде всего для формирования у учащихся функциональной воспринимать и критически анализировать умения информацию, представленную различных формах, В понимать вероятностный характер многих реальных зависимостей. К этому разделу относятся также сведения из логики, комбинаторики и теории графов, значительно варьирующиеся в зависимости от типа программы.

Место предмета в учебном плане

В учебном (образовательном) плане ГБОУ СОШ с. Пестравка на изучение предмета «Математика» отводится 5 учебных часов в неделю. Поэтому на изучение алгебры и начал математического анализа отводится 3 часа в неделю в 11 классе в течение года обучения, всего 102 часа.

При изучении курса математики на базовом уровне продолжаются и получают развитие содержательные линии: Алгебра, Функции, Уравнения и неравенства, Элементы комбинаторики, теории вероятностей, статистики и логики, вводится линия Начала математического анализа. В рамках указанных содержательных линий решаются следующие задачи:

✓ систематизация сведений о числах;

- ✓ изучение новых видов числовых выражений и формул;
- ✓ совершенствование практических навыков и вычислительной культуры,
- ✓ расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
- ✓ расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
- ✓ развитие представлений о вероятностно-статистических закономерностях в окружающем мире, совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
- ✓ знакомство с основными идеями и методами математического анализа.

Изучение математики на базовом уровне среднего (полного) общего образования направлено на достижение следующих **целей**:

Общеучебные цели:

- ✓ создание условий для формирования умения логически обосновывать суждения, выдвигать гипотезы и понимать необходимость их проверки;
- ✓ создание условий для формирования умения ясно, точно и грамотно выражать свои мысли в устной и письменной речи;
- ✓ формирование умения использовать различные языки математики: словесный, символический, графический;
- ✓ формирование умения свободно переходить с языка на язык для иллюстрации, интерпретации, аргументации и доказательства;
- ✓ создание условий для плодотворного участия в работе в группе
- ✓ формирование умения самостоятельно и мотивированно организовывать свою деятельность;
- ✓ формирование умения применять приобретённые знания и умения в практической деятельности и повседневной жизни для исследования (моделирования) несложных практических ситуаций на основе изученных формул и свойств при решении задач практического содержания, используя при необходимости справочники;
- ✓ создание условий для интегрирования в личный опыт новой, в том числе самостоятельно полученной информации.

Общепредметные цели:

- ✓ овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин (не требующих углубленной математической подготовки), продолжения образования;
- ✓ интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы

- алгоритмической культуры, пространственные представления, способность к преодолению трудностей;
- ✓ формирование представлений об идеях и методах математики как универсального языка науки и техники, средстве моделирования явлений и процессов;
- ✓ воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии через знакомство с историей развития математики, эволюцией математических идей.

Общеучебные умения, навыки и способы деятельности

В ходе освоения содержания математического образования учащиеся овладевают разнообразными способами деятельности, приобретают и совершенствуют опыт:

- ✓ построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин;
- ✓ выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; выполнения расчетов практического характера; использования математических формул и самостоятельного составления формул на основе обобщения частных случаев и эксперимента;
- ✓ самостоятельной работы с источниками информации, обобщения и систематизации полученной информации, интегрирования ее в личный опыт;
- ✓ проведения доказательных рассуждений, логического обоснования выводов, различения доказанных и недоказанных утверждений, аргументированных и эмоционально убедительных суждений;
- ✓ самостоятельной и коллективной деятельности, включения своих результатов в результаты работы группы, соотнесение своего мнения с мнением других участников учебного коллектива и мнением авторитетных источников.

Основная форма организации образовательного процесса – классно-урочная система.

Предусматривается применение следующих технологий обучения:

- 1. традиционная классно-урочная
- 2. лекции
- 3. практические работы
- 4. элементы проблемного обучения
- 5. технологии уровневой дифференциации
- 6. здоровьесберегающие технологии
- 7. ИКТ

Виды и формы контроля: переводная аттестация, промежуточный, самостоятельные работы, контрольные работы, тесты.

Планируемые результаты обучения алгебры и начал математического анализа в 11 классе

11 класс (102 ч)

1.Повторение курса 10 класса (3 ч)

Показательная функция. Логарифмическая функция. Тригонометрические формулы. Степенная функция.

Основные формирование представлений иели: 0 целостности И алгебры; обобщения овладение умением непрерывности курса И систематизации знаний по основным темам курса алгебры 10 класса; развитие логического, математического мышления и интуиции, творческих способностей в области математики

2.Тригонометрические функции (15ч)

Область определения и множество значений тригонометрических функций. Чётность, нечётность, периодичность тригонометрических функций. Свойства и графики функций у = cos x, y = sin x, y = tg x.

Основные цели: формирование представлений об области определения и множестве значений тригонометрических функций, о нечётной и чётной функциях, о периодической функции, о периоде функции, о наименьшем положительном периоде; формирование умений находить область определения и множество значений тригонометрических функций сложного аргумента, представленного в виде дроби и корня; овладение умением свободно строить графики тригонометрических функций и описывать их свойства;

В результате изучения темы учащиеся должны:

знать: область определения и множество значений элементарных тригонометрических функций; тригонометрические функции, их свойства и графики;

уметь: область определения значений находить И множество тригонометрических функций; множество значений тригонометрических функций вида kf(x) m, где f(x)- любая тригонометрическая функция; доказывать периодичность функций с заданным периодом; исследовать функцию на чётность и нечётность; строить графики тригонометрических функций; совершать преобразование графиков функций, зная их свойства; решать графически простейшие тригонометрические уравнения неравенства.

3.Производная и её геометрический смысл (16 ч)

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

Основные цели: формирование понятий о мгновенной скорости, о касательной к плоской кривой, о касательной к графику функции, о

производной функции, о физическом смысле производной, о геометрическом смысле производной, о скорости изменения функции, о пределе функции в точке, о дифференцировании, о производных элементарных функций; формирование умения использовать алгоритм нахождения производной элементарных функций простого и сложного аргумента; овладение умением находить производную любой комбинации элементарных функций; овладение навыками составления уравнения касательной к графику функции при дополнительных условиях, нахождения углового коэффициента касательной, точки касания.

В результате изучения темы учащиеся должны:

знать: понятие производной функции, физического и геометрического смысла производной; понятие производной степени, корня; правила дифференцирования; формулы производных элементарных функций; уравнение касательной к графику функции; алгоритм составления уравнения касательной;

уметь: вычислять производную степенной функции и корня; находить производные суммы, разности, произведения, частного; производные основных элементарных функций; находить производные элементарных функций сложного аргумента; составлять уравнение касательной к графику функции по алгоритму; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение; объяснять изученные положения на самостоятельно подобранных примерах; осуществлять поиск нескольких способов решения, аргументировать рациональный способ, проводить доказательные рассуждения; самостоятельно искать необходимую для решения учебных задач информацию.

4.Применение производной к исследованию функций (17 ч)

Возрастание и убывание функций. Экстремумы функции. Применение производной к построению графиков функций. Наибольшее и наименьшее значения функции. Выпуклость графика. Точки перегиба.

Основные цели: формирование представлений о промежутках возрастания и убывания функции, о достаточном условии возрастания функции, о промежутках монотонности функции, об окрестности точки, о точках максимума и минимума функции, о точках экстремума, о критических точках; формирование умения строить эскиз графика функции, если задан отрезок, значения функции на концах этого отрезка и знак производной в некоторых точках функции; овладение умением применять производную к исследованию функций и построению графиков; овладение навыками исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функций, точки перегиба и интервалы выпуклости.

В результате изучения темы учащиеся должны:

знать: понятие стационарных, критических точек, точек экстремума; как применять производную к исследованию функций и построению графиков; как исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функции;

уметь: находить интервалы возрастания и убывания функций; строить эскиз графика непрерывной функции, определённой на отрезке; находить стационарные точки функции, критические точки и точки экстремума; применять производную к исследованию функций и построению графиков; находить наибольшее и наименьшее значение функции; работать с учебником, отбирать и структурировать материал.

5.Первообразная и интеграл (16 ч)

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

Основные цели: формирование представлений о первообразной функции, о семействе первообразных, о дифференцировании и интегрировании, о таблице первообразных, о правилах отыскания первообразных; формирование умений находить для функции первообразную, график которой проходит через точку, заданную координатами; овладение умением находить площадь криволинейной трапеции, ограниченной графиками функций y = f(x) и y = g(x), ограниченной прямыми x = a. x = b, осью Ох и графиком y = h(x).

В результате изучения темы учащиеся должны:

знать: понятие первообразной, интеграла; правила нахождения первообразных; таблицу первообразных; формулу Ньютона Лейбница; правила интегрирования;

уметь: проводить информационно-смысловой анализ прочитанного текста в учебнике, участвовать в диалоге, приводить примеры; аргументировано отвечать на поставленные вопросы, осмысливать ошибки и их устранять; доказывать, что данная функция является первообразной для другой данной функции; находить одну из первообразных для суммы функций и произведения функции на число, используя справочные выводить правила отыскания первообразных; изображать криволинейную трапецию, ограниченную графиками элементарных функций; вычислять интеграл от элементарной функции простого аргумента по формуле Ньютона Лейбница с помощью таблицы первообразных и правил интегрирования; вычислять площадь криволинейной трапеции, ограниченной прямыми x = a, х = b, осью Ох и графиком квадратичной функции; находить площадь криволинейной трапеции, ограниченной параболами; вычислять путь, пройденный телом от начала движения до остановки, если известна его скорость; предвидеть возможные последствия своих действий; владеть навыками контроля и оценки своей деятельности.

6.Элементы математической статистики, комбинаторики и теории вероятностей (19ч)

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и

сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов. Случайные величины. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».

Основные цели: формирование представлений о научных, логических, комбинаторных методах решения математических задач; формирование умения анализировать, находить различные способы решения одной и той же задачи, делать выводы; развитие комбинаторно-логического мышления; формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий; формирование умения вычислять вероятность событий, определять несовместные и противоположные события; овладение умением выполнения основных операций над событиями; овладение навыками решения практических задач с применением вероятностных методов;

В результате изучения темы учащиеся должны:

знать: понятие комбинаторной задачи и основных методов её решения (перестановки, размещения, сочетания без повторения и с повторением); понятие логической задачи; приёмы решения комбинаторных, логических задач; элементы графового моделирования; понятие вероятности событий; понятие невозможного и достоверного события; понятие независимых событий; понятие условной вероятности событий; понятие статистической частоты наступления событий;

уметь: использовать основные методы решения комбинаторных, логических задач; разрабатывать модели методов решения задач, в том числе и при помощи графового моделирования; переходить от идеи задачи к аналогичной, более простой задаче, т.е. от основной постановки вопроса к схеме; ясно выражать разработанную идею задачи; вычислять вероятность событий; определять равновероятные события; выполнять основные операции над событиями; доказывать независимость событий; находить условную вероятность; решать практические задачи, применяя методы теории вероятности.

7. Обобщающее повторение курса алгебры и начал анализа за 10- 11 классы (15 ч)

Числа и алгебраические преобразования. Уравнения. Неравенства. Системы уравнений и неравенств. Производная функции и ее применение к решению задач. Функции и графики. Текстовые задачи на проценты, движение, прогрессии.

Основные цели: обобщение и систематизация курса алгебры и начал анализа за 10- 11 классы; создание условий для плодотворного участия в групповой работе, для формирования умения самостоятельно и мотивированно организовывать свою деятельность; формирование представлений об идеях и методах математики, о математике как средстве моделирования явлений и

процессов; развитие логического и математического мышления, интуиции, творческих способностей; воспитание понимания значимости математики для общественного прогресса.

В рабочей программе изменено соотношение часов на изучение тем и итоговое повторение в сторону уменьшения по отношению к типовой программе. Высвободившиеся часы отведены на обобщающее повторение по каждой теме, работу с тестами и подготовку к итоговой аттестации в форме и по материалам ЕГЭ. Подготовку к экзаменам планируется проводить в системе, начиная с 10 класса

Содержание курса алгебры и начал математического анализа в 11 классе

Элементы теории множеств и математической логики. Конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости. Утверждение (высказывание), отрицание утверждения, истинные и ложные утверждения, следствие, частный случай общего утверждения, контрпример, доказательство.

Числа и выражения. Корень n-й степени и его свойства. Понятие предела числовой последовательности. Степень с действительным показателем, свойства степени. Действия с корнями натуральной степени из чисел, тождественные преобразования выражений, включающих степени и корни.

Логарифм числа. Десятичные и натуральные логарифмы. Число е. Логарифмические тождества. Действия с логарифмами чисел; простейшие преобразования выражений, включающих логарифмы.

Изображение на числовой прямой целых и рациональных чисел, корней натуральной степени из чисел, логарифмов чисел.

Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0°, 30°, 45°, 60°, 90°, 180°, 270°. Формулы приведения, сложения, формулы двойного и половинного угла.

Уравнения и неравенства. Уравнения с одной переменной. Простейшие иррациональные уравнения.

Логарифмические и показательные уравнения и их решения. Тригонометрические уравнения вида sinx = a, cosx = a, tgx = a, где а — табличное значение соответствующей тригонометрической функции, и их решения.

Неравенства с одной переменной вида $\log x < d$, ax < d (где d можно представить в виде степени с основанием a).

Несложные рациональные, показательные, логарифмические, тригонометрические уравнения, неравенства и их системы, простейшие иррациональные уравнения и неравенства.

Метод интервалов. Графические методы решения уравнений и неравенств.

Решение уравнений и неравенств, содержащих переменную под знаком модуля.

Уравнения, системы уравнений с параметром.

Функции. Понятие функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значения функции. Периодичность функции. Чётность и нечётность функций.

Степенная, показательная и логарифмические функции; их свойства и графики. Сложные функции.

Тригонометрические функции $y = \cos x$, $y = \sin x$, $y = \tan x$. Функция $y = \cot x$. Свойства и графики тригонометрических функций. Арккосинус, арксинус, арктангенс числа, арккотангенс числа. Обратные тригонометрические функции, их свойства и графики.

Преобразования графиков функций: сдвиги вдоль координатных осей, растяжение и сжатие, симметрия относительно координатных осей и начала координат. Графики взаимно обратных функций.

Элементы математического анализа. Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Производная суммы, произведения, частного, двух функций.

Вторая производная, её геометрический и физический смысл. Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, нахождение наибольшего и наименьшего значений функции с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.

Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона—Лейбница. Определённый интеграл. Вычисление площадей плоских фигур и объёмов тел вращения с помощью интеграла.

Статистика и теория вероятностей, логика и комбинаторика. Частота и вероятность события. Достоверные, невозможные и случайные события. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики.

Вероятность суммы двух несовместных событий. Противоположное событие и его вероятность.

Правило умножения вероятностей. Формула полной вероятности.

Решение задач с применением дерева вероятностей.

Дискретные случайные величины и их распределения. Математическое ожидание, дисперсия случайной величины. Среднее квадратичное отклонение.

Понятие о нормальном распределении. Примеры случайных величин, подчинённых нормальному закону (погрешность измерений, рост человека).Представление о законе больших чисел. Роль закона больших чисел в науке, природе и обществе.

Совместные наблюдения двух случайных величин. Понятие о корреляции.

Тематическое планирование в 11 классе

11 класс					
1.	Повторение курса10 класса	3			
2.	Тригонометрические функции	15			
3.	Производная и ее геометрический смысл	16			
4.	Применение производной к исследованию функций Интеграл	18			
5.	Элементы математической статистики,	16			
6.	комбинаторики и теории вероятностей	19			
	Повторение	15			
	Всего:	102			

Учебно-методическое обеспечение

- 1. Алимов Ш. А., Колягин Ю. М., Ткачёва М. В. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10—11 классы. Базовый и углублённый уровни М.: Просвещение, 2014.
- 2. *Шабунин М. И.*, *Ткачёва М. В.*, *Фёдорова Н. Е.* и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. Базовый и углублённый уровни.-М.: Просвещение, 2014.
- 3. *Ткачёва М. В.*, *Фёдорова Н. Е.* Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый и углублённый уровни
- 4. Фёдорова Н. Е. Изучение алгебры и начал анализа. Книга для учителя. 10—11классы
- 5. *Шабунин М. И.*, *Ткачёва М. В.*, *Фёдорова Н. Е.* и др. Алгебра и начала математического анализа. Дидактические материалы. 11 класс. Базовый и углублённый уровни.-М.: Просвещение, 2014.
- 6. *Ткачёва М. В.* Алгебра и начала математического анализа. Тематические тесты. 11 класс. Базовый и углублённый уровни